Excursion to the Romberg Quarry, Gildehaus, Germany

Robert Hack, University Twente/ITC

On 25 August 2018 a day excursion in rock mass classification was organized in Bad Bentheim, Germany, by the Dutch Association of Engineering Geologists (Ingeokring). In the Sandstone Museum of Bad Bentheim a short presentation was given on the Slope Stability Probability Classification (SSPC) (Hack et al., 2003). A rock mass classification and slope stability assessment was done to show the practical application of the SSPC system in the nearby Romberg Quarry in Gildehaus (Fig. 1). The Romberg Quarry is a still active quarry and produces the so-called "Bad Bentheim" sandstone. An early Cretaceous sandstone (Valanginian - 136 Ma) consisting of generally uniformly graded grains of mainly quartz. The grains are bonded by interlocking, growth of grain contacts acting as cementation, and at some locations it is somewhat cemented by more recently formed kaolinite cement (Nyland et al., 2003). In some layers carbonate cement is present (Bock & Schmidt, 2010). The clay content is less than 1 %, but can be considerably higher. Small quantities of iron in different forms cause coloring of the sandstone from crème colored to ocher and more reddish colors. Fig.1 shows the location of the quarry and the location where the SSPC classification is done. Figs 2 and 3 show the classified unit and Fig. 3 shows the different discontinuity sets. Nowadays the quarry is excavated by small excavators and small hydraulic or pneumatic hammers for layers that are not interesting for construction stone. The actual construction stone is excavated in blocks by drilling small-diameter boreholes that are filled with expanding chemicals (Fig. 2). In some locations remnants of small-diameter boreholes are visible made long ago that resemble boreholes for oldfashioned blasting by black powder or something alike (the south-dipping boreholes in Fig. 2). Whether these are indeed boreholes for blasting is speculative and not confirmed.

Bad Bentheim sandstone is the reservoir rock for many oil fields in Northwest Europe and has been used as construction stone for numerous landmark buildings in the Netherlands, such as parts of the mediaeval "Burcht van Leiden", many churches in Delft, Dom in Utrecht, and "Paleis op the Dam" in Amsterdam. An interesting publication on the Bad Bentheim sandstone as construction stone is by Bock & Schmidt (2010) and more information can be found in Nyland & Dubelaar (2015) and Nyland et al. (2003); both in Dutch.

In the quarry, the Ingeokring group was initiated to the acquisition of the SSPC parameters. The determination of the small-scale roughness of the bedding planes infilled with soft clay caused most difficulties (see below). Regrettably the weather on the day of the excursion was very poor with heavy thunderstorms that limited the stay in the quarry. Therefore, the classification in this article was finalized a couple of days later when the weather was better.

Research

The quarry and the sandstone are often used for research and education purposes by German and Dutch universities and research institutes. A recent research of which the remains are still present in the quarry, is an investigation to the performance of water jet drilling and acoustically monitoring the nozzle position by among others the GFZ German Research Centre for Geosciences, Potsdam and TNO (Reinsch et al., 2018). The boreholes and other installations are visible in Fig. 2 and Fig. 3.

SSPC classification and slope stability

The classification is done on the face which is formed by joint J2 (about perpendicular to the photo direction in Fig. 2 and Fig. 3) and the slope stability analysis for slope 1 is done on the same part of the exposure with the same degree of weathering and same means of excavation (Table 1 through 5). The results of the classification show that slope 1 with orientation 030/65 (Fig. 3) is stable for all failure mechanisms considered in the SSPC system, i.e. for orientation-dependent and -independent stability. This is in agreement with the visual assessment. The clayey softening infill in bedding planes (B1) and joints (J3) is likely different in origin. The clay infill in the bedding planes is in-situ, but the fill in J3 is likely due to influx by percolating groundwater of material from surface weathering above at the top of the quarry. The stability calculation is based on a slightly weathered rock mass as is present in the face where the classification is done and is valid for the rock mass forming slope 1 except the surface layer of slope 1 (see below).

Weathering

Slope 1 (030/65) has been excavated likely a long time before the face on which the classification is done and hence, has been exposed for a longer time to weathering by surface agents. The surface layer and the rock mass directly behind the surface, say for a depth of some 20 to 30 cm are therefore more weathered (Fig. 2). The longer exposure time also allowed for more vegetation to develop that likely allowed weathering even more. Another factor that increased weathering is the dip of the slope (65°) that is such that rain and surface water runs over the slope and can easily penetrate into discontinuities. This in contrary to the face on which the classification is done which is vertical. Moreover at the corner the rock mass is exposed on two sides allowing more and faster temperature changes of the rock mass and subsequent likely more weathering.

The further advanced weathering of the surface layer of slope 1 resulted in a decrease in intact rock strength, a decrease in bedding spacing as more incipient bedding planes became mechanical, and a reduction in shear strength along discontinuities because of more weathered discontinuity walls and infill. This caused that the surface layer of slope 1 in the corner became in part instable for orientation-independent stability (Fig. 2 and Fig. 3). Calculations of orientation-independent stability are shown in Fig. 4 for varying degrees of weathering. The orientation-independent stability for slope 1 reduces to only 20 % if the degree of weathering increases from slightly to highly weathered. A stability of 20 % is effectively instable.

References:

Bock, H., Schmidt, L., 2010. Bridging space and time—Aspects of the Batavia saga as an homage to the outgoing IAEG president and his predecessor. In: Williams, A.L., Pinches, G.M., Chin, C.Y., Mcmorran, T.J., Massey, C.I. (Eds) Geologically Active: Proceedings of the 11th IAEG Congress, Auckland, New Zealand, 5-10 September 2010. CRC Press. ISBN: 9780415600347, pp. CD-rom.

Hack, H.R.G.K., Price, D.G., Rengers, N., 2003. A new approach to rock slope stability - A probability classification (SSPC). Bulletin of Engineering Geology and the Environment. 62 (2). DOI: https://doi.org/10.1007/s10064-002-0155-4. ISSN: 1435-9529; 1435-9537. pp. 167-184. http://dx.doi.org/10.1007/s10064-002-0155-4

Nijland, T.G., Dubelaar, W., 2015. Bentheimer zandsteen. Grondboor & Hamer. 48 (4). pp. 64-73. http://natuurtijdschriften.nl/download?type=document&docid=628973 (in Dutch)

Nijland, T.G., Dubelaar, W., Van Hees, R., Van der Linden, T., 2003. De Bentheimer zandsteen: oliereservoirgesteente en bouwsteen. Grondboor & Hamer. 57 (2). pp. 21-25. http://natuurtijdschriften.nl/record/406068 (in Dutch)

Reinsch, T., Paap, B., Hahn, S., Wittig, V., van den Berg, S., 2018. Insights into the radial water jet drilling technology – Application in a quarry. Journal of Rock Mechanics and Geotechnical Engineering. 10 (2). DOI: <u>https://doi.org/10.1016/j.jrmge.2018.02.001</u>. ISSN: 1674-7755. pp. 236-248.

					e characterization			EXPOSURE NO: 1; Unit II						
				ity Probability		ification (SSI	PC)							
LOGGED BY:			`E: <i>11/09/2018</i>		hrs	LOCATION				berg Qu	arry, Gilde	ehaus, Gei	rmany	
WEATHER CONDITIO		,	cipitation: slate			map no: Go								
Estimate temperature: 2		C Rai		rizzle/slight/he	-	northing: 5,								
Sun: cloudy METHOD OF EXCAV	/fair/bright	Wir		oreeze/strong/g		easting:	370,810.1	IME						
(tick)	ATION (ENI	E)	_		BILII				1		0.7	1 .1	1.7	
(uck) natural/hand-made:		1.00	Size total exp			length:	30	00 m	height		<u>25</u> m	depth:	<i>15</i> m	
1	pneumatic hammer excavation:		Mapped on t	his form (m):		length:	1	0 m	height		4 m	depth:	15 m	
pre-splitting/smooth wa conventional blasting w		✔ 0.99	Accessibility	: poor/fair/go	od									
conventional blasting (good:	0.77	Unit II											
	ontinuities:	0.75	onn n											
	ged blocks: intact rock:	0.72 0.67												
crushed	intact rock:	0.62												
FORMATION NAME:	Bentheim S	Sandstone,	Valanginian (Lower Creta	ceous	s), 136 Ma								
DESCRIPTION (BS 59	30: 1999):													
color: yellowish,	grain size		ucture & textur			weathering: slightly			NAME: sandstone					
reddish off-white	medium	to fine be	edded, very wi	idely jointed										
INTACT ROCK STREE						sample nun	nber(s):				WEATH	ERING (E	WE)	
< 1.25 MPa	Crumbles in		. 1 J											
1.25 - 5 MPa 5 - 12.5 MPa	Thin slabs b Thin slabs b			re						(tick) unweathered 1.00				
✓12.5 - 50 MPa						None				slightly 🗸 0.95				
✓ 50 - 100 MPa 100 - 200 MPa	Lumps brok	en by heavy	hammer blows	ua (Dull nin ain	~	(Intact roc	k strength	about 50 MPa)				moderately 0.90		
100 - 200 MIPa	0 MPa Lumps only chip by heavy hammer blows (Dull ringing sound)										highly 0.62 completely 0.35			
> 200 MPa		on hammer b	lows. Sparks fly	/							compien		0.55	
DISCONTINUITY SET	Γ (B=beddin	g C=Cleavag	ge J=joint, etc.):	В	81	J 2	J 3		4	5	EXISTIN	NG SLOPE	?	
Dip direction (DDD) (d	eg):			11	70	108	020						n/Slope dip	
Dip (DD) (deg):				2	0	90	65					(SDD/SD) 030/65		
Spacing (EDS) (m):				0.1	25	4.00	5.50	+				030/00	,	
	along strike	(m):		>	>	>	>	+			Slope he	ight:	<u>15</u> m	
Persistence	along dip (m				>	>	>	+			-	of existing		
CONDITION OF DISC		<i>.</i>						1			slope (tic	ck):		
Roughness	wavy:			1.00							stable 🗸		1	
large-scale (RI)	slightly wav	y:		0.95							small pro	oblems	2	
(on an area between $0.2 \ge 0.2$ and $1 \ge 1$ m ²)	curved: slightly curv	- A		0.85 <i>0.</i> 0.80	75	0.75	0.80				large pro	blems	3	
(see reverse side page)	straight	ea		0.80										
	rough steppe			0.95		1		1						
Roughness	smooth step			0.90										
small-scale (Rs)	1 1	blished stepped 0.85 bugh undulating 0.80									N T 1			
(on an area of	smooth undu	ulating	g 0.75		0.80	0.80	0.80				Notes: 1) If more	re than 5 discontinuity		
$0.2 \ge 0.2 = m^2$	polished und rough planar			0.70 0.65							sets; use		e or second	
(see reverse side page)	smooth plan			0.60							form.	ll material e	anala	
	polished pla			0.55		+						irregularit		
	cemented/ce			1.07							'flowing material'; smal roughness should be tak			
	no infill - surface stai			1.00							roughnes 0.55.	ss should be	taken as	
Infill material (Im)	non softenin sheared mate		coarse medium	0.93	0.55	1.00	0.55				3) If roug	ghness is anisotropic		
	free of clay,			0.85								le marks, s		
			coarse 0	0.75 0.								ghness sho perpendicu		
	Soft sheared material			0.65							parallel t	o the rough	ness and	
		-,	fine	0.55									noted on this form. ng of discontinuities	
	gouge < irre			0.42								e marked in roughness		
	gouge > irre flowing mat			0.17 0.05							columns		-	
none			1.00			+		+						
Karst (Ka)	none karst			0.92 1.00		1.00 1.00								
SUSCEPTIBILITY TO		ING (SW)		i		1	1	rema	arks: <i>Th</i>	e methoo	l of excava	ation is by	small	
degree of weathering: date excavati			ion:	on: remarks:						remarks: The method of excavation is by small excavator or small hydraulic or pneumatic hammer,				
		1980?			Slightly to moderately > 200			and probably by some old-fashioned blasting. Little or no damage is inflicted in the rock mass.						
- 3				year? (gue			1			Therefore, the method of excavation is classified as				
								pre-	splittin	g/smoot	h wall blas	sting.	© Robert Hack, 201	

Table 4. SSPC slope stability calculation – orientation-independent stability

	orientation INdependent stability	SLOPE NO: 1; Unit II; slope 1			
	Slope Stability Probability Classification (SSPC)				
CALCULATED BY: RH	DATE: 11/09/2018	LOCATION (map coordinates):			
Remarks:		map no: Google Earth; UTM 32 U			
		northing: 5,796,342.36 m N			
		Easting: 370,810.11 m E			
DETAILS OF SLOPE					
METHOD OF EXCAVATION (SME)	WEATHERING (SWE)	GEOMETRY			
(tick) natural/hand-made: 1.00 pneumatic hammer excavation: 0.76	(tick) unweathered 1.00 slightly $\checkmark 0.95$	Slope dip direction (SDD) (degrees):	<i>030</i> °		
pre-splitting/smooth wall blasting: $\checkmark 0.99$ conventional blasting with result:	moderately 0.90 highly 0.62	Slope dip (SD) (degrees):	65°		
good: 0.77 open discontinuities: 0.75	completely 0.35	Slope height (Hslope) (m)	<i>15</i> m		
dislodged blocks: 0.72	note: SWE = 1.00 for 'soil type' units, e.g. cemented soil, etc.		:		
fractured intact rock: 0.67 crushed intact rock: 0.62					
SLOPE UNIT NAME:					
ORIENTATION INDEPENDENT STABILITY					
SLOPE INTACT ROCK STRENGTH (SIRS)					
SLOPE DISCONTINUITY SPACING (SSPA)	SIRS = RIRS (from reference rock mass) * S	SWE (weathering slope) = 52.6 * 0.95 =	50 MPa		
SSPA = RSPA (from referen	nce rock mass) * SWE (weathering slope) * SME (method of ex	xcavation slope) = 0.699 * 0.95 * 0.99 =	0.657		
SLOPE CONDITION OF DISCONTINUITIES (SCD) SCD = RCD (from reference rock mass) * SWE (weathering slope) = 0.364 * 0.95 =					
SLOPE ROCK MASS FRICTION (\$\$ srm)					
\$	$s_{SRM} = SIRS * 0.2417 + SSPA * 52.12 + SCD * 5.779 = 50 * 0.$ (if SIRS > 132 MPa then SIRS = 132; if SSPA > 1 then SSPA =		48 °		
SLOPE ROCK MASS COHESION (cohsrm)					
$coh_{SRM} = SIRS * 94.27 + SSPA * 28629 + SCD * 3593 = 50 * 94.27 + 0.657 * 28629 + 0.346 * 3593 = 50 + 0.046 + 0.04$					
	(if SIRS > 132 MPa then SIRS = 132; if SSPA > 1 then SSPA =	1; if SCD > 1.0165 then SCD $= 1.0165$)			
MAXIMUM SLOPE HEIGHT (Hmax)					
	$\sin(SD) * \cos(\varphi_{SRM}) / (1 - \cos(SD - \varphi_{SRM}) = 0.00016 * 24766 * s$		<i>55.0</i> m		
	obability to be stable as percentage.	Ratios for use in graph left:			
Dashed probability lines indicate tha	the number of slopes used for the development of	Hmax / Hslope = 55.0 m / 15.0 m =	3.67		
not be as certain as the probability lin		$\varphi_{\rm SRM} / { m SD} = 48^{\circ} / 65^{\circ} =$	0.738		
3.67	• ://				
probability to k	be stable > 95 %				
••••••••••••••••••••••••••••••••••••••	95 % 95 % 95 %				
Hmax / Hslope	89.70				
SH 1	50				
<u> </u>	20				
	5.				
probability to	be stable < 5 %				
processing to	•	ORIENTATION INDEPENDENT			
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	STABILITY			
		D 1 1 12 / 1 / 11			
		Probability to be stable: If $\varphi_{\text{SRM}} > \text{SD}$, then			
0.1 - i i i i i i i i i i i i i i i i i i	4 06 08 10	probability = 100 %			
	$\varphi_{SRM/SD}$ 0.738 0.0	else			
	© Robert Hack, 2017	read probability from graph left:	> 95 %		

Table 5. SSPC slope stability calculation – orientation-dependent stability

Orientation independent stability: Rock mass is strong enough for the slope height Orientation dependent stability: J3 is slope forming; B1 and J2 form no problem as they give no options for sliding nor toppling For the partially collapsed corner see text.

Fig. 1. Gildehaus, Romberg Quarry with photo location and photo direction.

Fig. 2. Location Unit II.

Fig. 3, Slope and interpretation of discontinuities (J2 is the face on which the classification is done).

Fig. 4. SSPC orientation-independent stability with different degrees of weathering.